Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.235
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
2.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605012

RESUMO

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Assuntos
Osteogênese , Tecidos Suporte , Osteogênese/fisiologia , Tecidos Suporte/química , Porosidade , Impressão Tridimensional , Zinco/farmacologia
3.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642353

RESUMO

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Isatina , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Vorinostat/farmacologia , Isatina/farmacologia , Linhagem Celular Tumoral , Amidas/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Proliferação de Células , Estrutura Molecular
4.
Redox Rep ; 29(1): 2341537, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629506

RESUMO

BACKGROUND: Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS: Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS: Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1ß and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION: In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.


Assuntos
Antioxidantes , NF-kappa B , Ratos , Animais , Masculino , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Zinco/farmacologia , Acrilamida/toxicidade , Ratos Wistar , Sêmen/metabolismo , Estresse Oxidativo , Transdução de Sinais , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
5.
Nutrients ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542798

RESUMO

A balanced microbiota-microorganisms that live in the gut-is crucial in the early years of a child's life, while dysbiosis-altered microbiota-has been linked to the development of various diseases. Probiotics, such as Alkalihalobacillus clausii, are commonly used to restore the balance of gut microbiota and have shown additional antimicrobial and immunomodulatory properties. Intake of micronutrients can affect the structure and function of the gut barrier and of the microbiota by having multiple effects on cellular metabolism (e.g., immunomodulation, gene expression, and support structure proteins). An inadequate zinc intake increases the risk of deficiency and associated immune dysfunctions; it is responsible for an increased risk of developing gastrointestinal diseases, respiratory infections, and stunting. Paediatric zinc deficiency is a public health concern in many countries, especially in low-income areas. Currently, zinc supplementation is used to treat childhood diarrhoea. This review examines how combining A. clausii and zinc could improve dysbiosis, gut health, and immunity. It suggests that this combination could be used to prevent and treat infectious diseases and diarrhoea in children up to adolescence.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Criança , Zinco/farmacologia , Disbiose , Diarreia/tratamento farmacológico
6.
Int J Biol Macromol ; 265(Pt 2): 131156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537862

RESUMO

PTEN-induced putative kinase 1 (PINK1) is a key regulator of mitophagy, however, the relevant information remains poorly understood on aquatic animals. Here, a PINK1 gene was cloned, characterized and functionally studied in yellow catfish. PINK1 encoded a protein containing 570 amino acids, 2 functional domains. High fat (15.66%) fed fish showed a downregulation trend of liver PINK1 expression than that of normal fat (10.14%) group, and was reversed by the addition of Zn. In the in vitro study, high fat (HF) can increase lipid deposition and decrease by addition Zn (HFZ) in hepatocytes, whereas above phenomena reversed by overexpression/interference of PINK1, respectively. In addition, the addition of Zn can significantly affect mitochondrial activity, increase mitophagy, and improve the antioxidant activity of hepatocytes. Together, these findings illustrated that yellow catfish PINK1 is conserve, and it participated in mitochondria control of fish. These findings indicate Zn could alleviate high fat-induced hepatic lipid deposition of fish by activating PINK1-mediated mitophagy and provide basis for further exploring new approach for decreasing lipid deposition in fish products during aquaculture.


Assuntos
Peixes-Gato , Zinco , Animais , Zinco/farmacologia , Zinco/metabolismo , Metabolismo dos Lipídeos , Peixes-Gato/genética , Peixes-Gato/metabolismo , Fígado/metabolismo , Proteínas Quinases/metabolismo , Lipídeos
7.
Biomed Mater ; 19(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518361

RESUMO

Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Compostos de Zinco , Animais , Coelhos , Tecidos Suporte , Zinco/farmacologia , Proliferação de Células , Compostos de Cálcio , Regeneração Óssea , Silicatos , Fosfatos de Cálcio/farmacologia
8.
Genes (Basel) ; 15(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540393

RESUMO

Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA ß-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.


Assuntos
Peixes-Gato , Zinco , Animais , Zinco/farmacologia , Metabolismo dos Lipídeos/genética , Peixes-Gato/genética , Peixes-Gato/metabolismo , Lipídeos , Autofagia/genética , Micronutrientes/metabolismo
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430558

RESUMO

To investigate effects of inorganic or complexed trace mineral source (zinc, copper, manganese, and cobalt) on receiving period performance and morbidity, crossbred beef heifer calves (n = 287) arriving on three delivery dates were used in a 42-d receiving trial. Heifers were processed after arrival, stratified by day -1 body weights (BW) and allocated randomly to eight pens (11 to 13 heifers/pen, 24 pens total). Within truckload, pens were assigned randomly to dietary treatment (n = 12 pens/treatment). Heifers were housed on 0.42-ha grass paddocks, provided ad libitum bermudagrass hay and provided dietary treatments in grain supplements fed daily. Treatments consisted of supplemental zinc (360 mg/d), copper (125 mg/d), manganese (200 mg/d), and cobalt (12 mg/d) from complexed (Zinpro Availa 4, Zinpro Corp. Eden Prairie, MN) or inorganic sources (sulfates). Heifers were observed daily for clinical bovine respiratory disease (BRD). If presenting BRD symptoms and rectal temperature ≥ 40 °C, heifers were deemed morbid and treated with antibiotics. Six heifers/pen were bled to determine serum haptoglobin concentrations on days 0, 14, and 28. Liver biopsies were taken on day 5 ±â€…2 and 43 ±â€…1 from three calves selected randomly from each pen for mineral status comparisons. Statistical analyses were performed using the MIXED, GLIMMIX, and repeated measures procedures of SAS 9.4 with truckload as a random effect and pen within truckload specified as subject. There tended to be a treatment by day interaction for BW (P = 0.07). Heifer BW did not differ on day 0 (P = 0.82) and day 14 (P = 0.36), but heifers fed complexed trace minerals had greater BW on day 28 (P = 0.04) and day 42 (P = 0.05). Overall average daily gains were greater for heifers fed complexed trace minerals (P = 0.05; 0.78 vs. 0.70 kg, SE = 0.03). Heifers supplemented with inorganic trace minerals had greater BRD incidence (P = 0.03; 58 vs. 46%, SE = 3.6). Haptoglobin concentrations decreased throughout the trial (P < 0.001), and heifers fed complexed trace minerals tended to have a decrease in haptoglobin concentrations (P = 0.07). The source of trace mineral supplementation had no effect (P ≥ 0.20) on liver mineral concentrations and there were no treatment × day interactions (P ≥ 0.35). In conclusion, supplementing diets for the first 42 d after arrival with complexed trace mineral sources improved heifer performance as compared to heifers supplemented with inorganic trace minerals.


Issues associated with health and management of newly received cattle continue to pose significant animal welfare and economic challenges for the beef industry. Diagnosis of bovine respiratory disease, accompanied with poor growth performance, can be addressed by nutritional intervention in receiving cattle. Trace mineral inclusion in receiving rations is vital to calf performance. There are numerous sources of trace mineral supplements that exist commercially for cattle and their effects on immune function, growth, and performance measures were evaluated. Organic trace mineral supplements are being used in replacement of inorganic salts due to potentially greater bioavailability and functionality. An organic source that is commonly used are amino acid complexes. Replacing inorganic sources with complexed sources of trace minerals (zinc, copper, manganese, and cobalt) improved growth performance and decreased sickness during the 42-d receiving study.


Assuntos
Oligoelementos , Bovinos , Animais , Feminino , Oligoelementos/farmacologia , Manganês/farmacologia , Cobre/farmacologia , Haptoglobinas/análise , Suplementos Nutricionais , Minerais/farmacologia , Zinco/farmacologia , Cobalto/farmacologia , Dieta/veterinária , Peso Corporal , Ração Animal/análise
10.
J Biomed Mater Res B Appl Biomater ; 112(3): e35395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433609

RESUMO

6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.


Assuntos
Antineoplásicos , Mercaptopurina , Mercaptopurina/farmacologia , Zinco/farmacologia , Sistemas de Liberação de Medicamentos , Durapatita/farmacologia , Antineoplásicos/farmacologia , Íons , Concentração de Íons de Hidrogênio
11.
Curr Microbiol ; 81(5): 119, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526674

RESUMO

Talaromyces marneffei is an opportunistic pathogenic fungus that mainly affects HIV-positive individuals endemic to Southeast Asia and China. Increasing efforts have been made in the pathogenic mechanism and host interactions understanding of this pathogen in the last two decades; however, there are still no conclusions on how T. marneffei was transmitted from the donor bamboo rats to humans. A perception that the failure of fungus isolation from soil was attributed to the low salt tolerance of T. marneffei. Therefore, the effect of environmental fluctuations in fungal growth and development is fundamental for the characterization of its origin and fungal biology understanding. Herein, we characterized high osmolarity, pH, metal ions, nutrients, and oxidative stress have versatile effects on T. marneffei hyphal or yeast growth, conidia generation, and pigment production. Among these, high pH, low glucose amounts, and the inorganic nitrogen ammonium tartrate stimulated the red pigment production, whereas high osmolarity, high pH, and the inorganic nitrogen sodium nitrate could significantly accelerate the conidia generation. Specifically, zinc starvation repressed conidia generation and prevented the wrinkled yeast colony formation, indicating the function of zinc regulators in pathogenicity regulation. Since conidia are recognized as the infectious propagules, the effects characterization of different environmental factors in T. marneffei morphology in this work will not only expand the growth and pathogenic biology understanding of the fungus but also provide more clues for the T. marneffei infection transmission origin investigation.


Assuntos
Micoses , Saccharomyces cerevisiae , Talaromyces , Humanos , Nitrogênio , Zinco/farmacologia
12.
Theriogenology ; 221: 18-24, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521006

RESUMO

Zinc (Zn) plays essential roles in numerous cellular processes. However, there is limited understanding of Zn homeostasis within the bovine reproductive system. This study investigated the influence of estradiol (E2) and progesterone (P4) on Zn transporter expression and intracellular free Zn levels in bovine oviduct epithelial cells (BOEC). For this purpose, cells were harvested from slaughtered cows and cultured in vitro. Intracellular Zn concentrations were measured using FluoZin-3AM staining, while real-time polymerase chain reaction assessed Zn transporter gene expression and quantification. Overall, our results confirmed the gene expression of all the evaluated Zn transporters (ZIP6, ZIP8, ZIP14, ZnT3, ZnT7 and ZnT9), denoted and the active role of E2 and P4 in intracellular Zn regulation. Our findings suggest an interaction between Zn, E2 and P4.


Assuntos
Proteínas de Transporte , Progesterona , Zinco , Feminino , Bovinos , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Oviductos/metabolismo , Células Epiteliais/metabolismo , Estrogênios/farmacologia
13.
Theriogenology ; 221: 47-58, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554613

RESUMO

Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 µg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 µg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 µg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.


Assuntos
Antioxidantes , Zinco , Feminino , Animais , Bovinos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Sulfato de Zinco/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Fertilização In Vitro/veterinária , Blastocisto/fisiologia , Glutationa/metabolismo , DNA/metabolismo
14.
Int Immunopharmacol ; 131: 111868, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493692

RESUMO

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.


Assuntos
Ferrocianetos , Chumbo , Traumatismos da Medula Espinal , Ratos , Animais , Chumbo/farmacologia , Chumbo/uso terapêutico , Zircônio/uso terapêutico , Zircônio/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Inflamação/tratamento farmacológico , Zinco/uso terapêutico , Zinco/farmacologia
15.
Dalton Trans ; 53(10): 4512-4525, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348683

RESUMO

A new hexanuclear Zn(II) complex with the ligand 2,2'-(piperazine-1,4-diyl)bis(ethan-1-amine), [L3Zn6(OH)6][ClO4]6·3MeOH·7H2O, was synthesized. The crystal structure of this complex showed that each Zn atom is in a distorted tetrahedral coordination environment, surrounded by two nitrogen atoms from each ligand and two hydroxide groups, each of which bridges to another Zn atom. The anticancer activities of the ligand and its metal complex against the breast cancer cell line (MCF-7) indicated that the zinc complex had a greater anticancer activity. The free ligand and its metal complex were evaluated for antioxidant activity using the DPPH scavenging method. In addition, the antibacterial activities of both compounds were screened against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The interaction of these compounds with DNA and AChE was also investigated using molecular docking.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Raios X , Ligantes , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Complexos de Coordenação/química , Zinco/farmacologia , Zinco/química , Testes de Sensibilidade Microbiana
16.
Sci Rep ; 14(1): 4448, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396015

RESUMO

The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Zinco/farmacologia , Escherichia coli , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Enterococcus , Diarreia/tratamento farmacológico , Diarreia/veterinária , Diarreia/microbiologia , Compostos Orgânicos/farmacologia , Suplementos Nutricionais , Ciprofloxacina/farmacologia
17.
Nanomedicine ; 57: 102739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341009

RESUMO

Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.


Assuntos
Citocinas , Zinco , Animais , Coelhos , Zinco/farmacologia , Fator A de Crescimento do Endotélio Vascular , Preparações de Ação Retardada/farmacologia , Stents
18.
Environ Pollut ; 346: 123627, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395127

RESUMO

Long-term environmental exposure to metals e.g. zinc (Zn), may allow saltmarsh halophytes to develop metal tolerance to improve the chance of survival of their progeny in future metal-contaminated scenarios. Juncus acutus seeds were collected from mature parents (F0) inhabiting a legacy Zn-contaminated location (Cockle Creek) and an uncontaminated reference location (Swansea) of Lake Macquarie, NSW, Australia. Seeds (J. acutus) were exposed to Zn (0.00 mM (control), 0.01 mM (effective concentration, EC10) and 0.74 mM (EC50)) and resultant germinants (F1) were allowed to grow until 15 days. Seedling growth parameters i.e. biomass, root length and 1st leaf length, and seedling biochemical responses i.e. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) antioxidant enzyme activity and lipid peroxidation products, malondialdehyde (MDA), were examined in order to assess if enzymes may be implicated in conferring tolerance to the offspring of metal-exposed parents. Control locations exhibited significantly greater declines in biomass and root length with Zn dose compared to seed from contaminated locations, suggesting F1 offspring from contaminated parents were conferred tolerance to Zn. Furthermore, significant upregulation of CAT and GPx enzymes were evident in the seedlings derived from parents of contaminated locations. These are the antioxidative enzymes responsible for minimizing metal-induced oxidative stress, and may, in part, be responsible for increasing seedling fitness and observed tolerance.


Assuntos
Antioxidantes , Metais , Antioxidantes/metabolismo , Regulação para Cima , Catalase/metabolismo , Metais/farmacologia , Zinco/farmacologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Plântula , Sementes
19.
Nanoscale ; 16(10): 5383-5394, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375749

RESUMO

Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.


Assuntos
Antifúngicos , Candida albicans , Compostos de Zinco , Humanos , Antifúngicos/farmacologia , Hidróxidos/farmacologia , Hidróxidos/química , Zinco/farmacologia , Zinco/química , Análise Espectral
20.
J Nutr ; 154(3): 896-907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301957

RESUMO

BACKGROUND: Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood. OBJECTIVES: The study aimed to investigate the mechanisms by which Zn-induced MT4 expression protects mitochondrial function and energy metabolism subjected to oxidative stress using the avian embryo and embryonic primary hepatocyte models. METHODS: First, we investigated whether MT4 expression alters mitochondrial function. Then, we examined the effects of Zn-induced MT4 overexpression and MT4 silencing on embryonic primary hepatocytes from breeder hens fed a normal Zn diet subjected to a tert-butyl hydroperoxide (BHP) oxidative stress challenge during incubation. In vivo, the avian embryos from hens fed the Zn-deficient and Zn-adequate diets were used to determine the protective roles of Zn-induced MT4 expression on the function of mitochondria exposed to oxidative stress induced by in ovo BHP injection. RESULTS: An in vitro study revealed that Zn-induced MT4 expression reduced reactive oxygen species accumulation in primary hepatocytes. MT4 silencing exacerbated BHP-mediated mitochondrial dysfunction whereas Zn-inducible MT4 overexpression mitigated it. Another in vivo study disclosed that maternal Zn-induced MT4 expression protected mitochondrial function in chick embryo hepatocytes against oxidative stress by inhibiting the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/peroxisome proliferators-activated receptor-γ (PPAR-γ) pathway. CONCLUSION: This study underscores the potential protective roles of Zn-induced MT4 expression via the downregulation of the PGC-1α/PPAR-γ pathway on mitochondrial function stimulated by the stress challenge in the primary hepatocytes in an avian embryo model. Our findings suggested that Zn-induced MT4 expression could provide a new therapeutic target and preventive strategy for repairing mitochondrial dysfunction in disease.


Assuntos
Doenças Mitocondriais , Zinco , Embrião de Galinha , Animais , Feminino , Zinco/farmacologia , Zinco/metabolismo , Galinhas/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...